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Abstract. The paper gives a survey of completion results for symmetric and unsymmetric partial 
latin squares. Several embedding results are mentioned, but the emphasis is on proper completion 
where, given a partial latin square of side n, one looks for a completion to a latin square of the same 
side.

For latin squares with no symmetry required we prove a strengthening of the known results 
concerning the Evans conjecture, which was proved to be true in 1981.

We then state some new results about the corresponding problem for symmetric latin squares and 
describe their proofs brief y ; complete proofs will be given elsewhere.
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1. Introduction

The subject of this paper belongs to the branch of mathematics called 
combinatorics. This area is concerned with arranging, counting, and 
choosing from a number of objects. Very often only a finite number of 
objects are considered at a time, and the discrete nature of the subject 
gives it a striking feature not so common in other parts of mathematics: 
frequently a deep mathematical problem can be explained in very simple 
terms, easy to understand for anybody who cares to listen.

Probably the most famous problem sharing this particular beauty of 
combinatorics is the so-called four colour problem: Is it true that any map 
in the plane or on a sphere can be coloured so that any pair of countries 
with a common boundary always get different colours, using altogether 
at most four colours? (It must be required that each country consists of 
just one connected region). The four colour problem was unsolved for 
more than a century, though many skilled mathematicians have worked 
very hard on it (and so have many amateur mathematicians!) It has now 
been established that four colours do suffice to colour any map; a proof 
was announced in 1976 and published in 1977 (Appel & Haken 1976 and 
1977, Appel, Haken & Koch 1977). But the proof depends heavily on the 
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use of a computer, and so the ‘simple’ four colour problem still puzzles 
the minds of combinatorialists hoping to find a more direct proof.

This article is about a concept in combinatorics called latin squares 
(completely unrelated to the four colour problem), a topic which in the 
course of time also has contained some simply stated problems that 
turned out to be extremely difficult. Consider the following example.

Let n be a positive integer. Given an nXn array (chessboard) in which 
n-1 of the cells (squares) are filled with one of the integers l,...,n, so that 
no integer occurs twice in any row or column, is it always possible to fill 
all the remaining cells to obtain an nXn array in which each of the 
numbers l,...,n occurs exactly once in each row and column?

This question was first posed by T. Evans (Evans 1960), and the 
assumption of an affirmative answer became known as the Evans Conjec
ture. Despite the fact that the problem received much attention, and 
many partial solutions were published, no complete solution was given 
until 1981, when B. Smetaniuk proved that the Evans Conjecture is true, 
and so the answer to the above question is indeed yes (Smetaniuk 1981).

The present paper is closely related to the Evans Conjecture, but 
before continuing the discussion we have better put the topic in its 
proper context of latin squares.

A partial latin square of side n on the symbols sb...,sn is an nXn matrix 
of cells in which each cell either is empty or contains one of the symbols 
s1?...,sn, and, furthermore, no symbol occurs twice in any row or twice 
in any column. It is a latin square if there are no empty cells. Thus in a 
latin square each symbol must occur exactly once in each row and col
umn. We shall almost always assume that the set of symbols is {l,...,n}. 
Figure 1 shows two latin squares and two further partial latin squares, all 
of side 6.

With the above definitions, the Evans Conjecture can be formulated like 
this: Any partial latin square of side n with at most n-1 non-empty cells

abed

Figure 1

1 3 4 6 2 5 1 2 4 5 6 3 1 2 4 1 2 3 4
3 6 5 1 4 2 5 4 6 3 2 1 5 4 6
4 5 1 2 3 6 2 1 5 6 3 4 2 1 5
6 1 2 3 5 4 6 3 2 4 1 5 4 5
2 4 3 5 6 1 4 6 3 1 5 2 5 6
5 2 6 4 1 3 3 5 1 2 4 6 6
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can be completed to a latin square of side n. The same conjecture has 
been stated on at least two other occasions (Klarner 1970; Dénes 1974).

After B. Smetaniuk’s proof, an independent proof was published by 
A. J. W. Hilton and the present author proving, however, a stronger 
result (Andersen & Hilton 1983). T. Evans arrived at his conjecture part
ly because he could find no counterexamples, and partly because it is 
easy to find examples of a partial latin square of side n with n non-empty 
cells which cannot be completed to a latin square of side n (Figure Id is 
such an example). The paper by Andersen and Hilton actually contained 
a complete characterization of those partial latin squares of side n with n 
non-empty cells that cannot be completed to a latin square of side n.

In Section 5 of this paper we extend the characterization to include all 
those partial latin squares of side n with n+1 nonempty cells which 
cannot be completed to a latin square of side n.

It may be asked where the importance of determining such a further 
class of non-completable partial latin squares lies. The author believes 
that throughout mathematics determining extreme cases is very valuable 
and so, in particular, there is a large difference between knowing that 
squares with n non-empty cells can be completed except in a well-de
fined, non-empty class of situations and just knowing that squares with 
n-1 non-empty cells can be completed. Furthermore, by characterizing 
exceptions ‘one step beyond’ the extreme cases, a good deal more insight 
in the structure of the problem is gained (accordingly, we believe that the 
exceptions presented in Section 5 give a good idea about how non- 
completable squares can be obtained if yet more non-empty cells are 
introduced). In the present case it is also useful for the proof of one of the 
main results of Section 6.

Another possible question could be whether a ‘nice’ characterization of 
non-completable squares with any number of non-empty cells is obtain
able. The answer is almost certainly no, as the problem of completing 
partial latin squares is known to be NP-complete and so belongs to a class 
of problems that are not expected to have ‘easy solutions’. We discuss this 
in more detail in the next section.

While on the subject of questions, a simple, but natural one is: What is 
the purpose of latin squares in general and of completing partial latin 
squares in particular? It is beyond the scope of this paper to discuss 
applications of latin squares at any great length, but we can single out the 
subject of design of experiments as probably the main field concerned with 
practical applications of latin squares. They are used in some situations 
where one wants to gather data for statistical analysis, and the purpose of 



26 LARS DØVLING ANDERSEN

the latin squares is to eliminate the effect of certain systematic differences 
from the data. We mention briefly two examples of slightly differing 
nature:

1. Sheer planning purposes:
Suppose that we want to test the effect of n different diets on the milk 
yield of cattle. We select n cows and n time periods and use a latin 
square of side n with a row for each cow and a column for each time 
period. Then, if, say, the cell common to the row of cow 1 and the 
column of period 2 contains the symbol 3 it means that cow 1 is given 
diet 3 in period 2, etc. With proper handling of the data, this would 
eliminate differences between cows and time periods, as each diet is 
tested on each cow and in each time period.

2. As a ‘physical’ latin square:
If n varieties of a crop are to be tested on a rectangular field, it will 
often be advantageous to superimpose an nXn latin square on the 
field, thus dividing it into n2 smaller rectangular plots all having the 
same size, and growing crop 1 in the n plots corresponding to the 
occurrences of 1 in the latin square, etc. There is a good chance that 
this will eliminate yield differences due to fertility differences of the 
plots.

In both of the above examples, further properties of the latin squares 
(such as row completeness) would be desirable, so the description here is 
much simplified. We must omit further discussion and refer the reader to 
some of the many books on the subject (Dénes & Keedwell 1974; Fisher 
1935; Cochran & Cox 1950; Cox 1958; The Open University 1981). It is 
not hard to imagine situations like the examples above, where it would 
be convenient to have certain entries of the latin squares fixed a priori; 
this is where completion of partial latin squares comes in.

An even simpler example of this is obtained when considering the 
completion of a partial latin square as a time-tabling problem in the fol
lowing way. We have two sets Si and S2, each consisting of n persons, 
and we must schedule one meeting between each person from Sj and 
each person from S2, all meetings taking place within n time periods. 
The set S2 could consist of participants of a course and Si be the teachers 
of the course with the meetings corresponding to examinations. Such a 
schedule is readily provided by a latin square of side n with the rows 
corresponding to Si, the columns to S2 and the entries l,...,n to the time 
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periods. If some of the meetings have to take place at prescribed times, 
we have our completion problem. It may be argued that in a situation 
such as the above, it is unlikely that the number of teachers is equal to the 
number of participants; it follows, however, from one of the simplest 
completion results of Section 3 that our results will cover the case of 
IS1I + IS2I also (for any set A, |A| denotes the number of elements of A).

If we have just one set S of persons and we want to schedule one 
meeting between each pair of persons we can use a symmetric latin square. 
We have defined latin squares as matrices, and so it is customary to 
enumerate the rows from the top and the columns from the left, so that 
cell (i,j) is the cell common to the ith row from the top and the jth 
column from the left. We say that a partial latin square of side n is 
symmetric if, whenever one of the cells (i,j) and (j,i) is non-empty then so 
is the other, and they have the same entry (l^iCj^n). Figure la shows a 
symmetric latin square. The diagonal is the set of cells {(i,i)|l^i^n}. In a 
symmetric latin square of odd side each symbol occurs exactly once on 
the diagonal, and in a symmetric latin square of even side each symbol 
occurs an even number of times on the diagonal.

We can use a symmetric latin square for scheduling meetings between 
each pair from a group of n persons (for example as required for a round
robin tournament) by letting persons i and j meet in time period k, 
where k is the entry of cells (i,j) and (j, i). This will require n time periods 
although each person has just n-1 meetings; in each time period occur
ring on the diagonal one or more persons have no meetings, person i 
having time period k off where k is the entry of cell (i,i). When schedul
ing pairwise meetings for an odd number of persons, clearly one person 
has to be unpaired in each period, and so n time periods are indeed 
needed altogether. If n is even, however, the symmetric latin square 
again brings n time periods into the schedule, where only n-1 are needed, 
as we shall see. One way of getting round this is to require that all cells 
on the diagonal of the symmetric latin square contain the entry n; then 
no meeting will be scheduled for period n, so only n-1 periods are used. 
But perhaps a more natural way of looking at round-robin tournaments 
with an even number of participants is from the point of view of complete 
graphs.

A graph G = (V,E) consists of a set V called vertices and a set E of edges, 
which are pairs of distinct vertices. An edge e = (Vi,V2) is said to join 
vertices Vt and V2, and to be incident with Vj and V2, and we write e — 
V^. We also say that V] and V2 are neighbours. A complete graph is a
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graph in which each pair of vertices are joined by an edge, and the 
complete graph with n vertices is denoted by Kn. Figure 2 shows draw
ings of K5 and K6. The numbers on the edges are explained below.

An edge-colouring of a graph G with k colours is an assignment of one of 
k colours to each edge of G such that edges incident with the same vertex 
always have different colours. We shall always use the set of ‘colours’ 
{l,...,k}. Each of the graphs K5 and K6 of Figure 2 has been given an 
edge-colouring with 5 colours. The chromatic index q(G) of G is the least 
k for which G has an edge-colouring with k colours. A famous theorem 
states that if d(G) is the maximum degree of G (the largest number of edges 
incident with any one vertex), then q(G) is either d(G) or d(G) + l 
(Vizing 1964). It is wellknown that

n-1 if n is even, 
n if n is odd.

Thus the edge-colourings given to K5 and K6 in Figure 2 are minimal, 
i.e. with as few colours as possible.

If the vertices of a graph G correspond to persons, then clearly an 
edge-colouring of G provides a schedule for meetings between all pairs 
joined by an edge: each meeting between a pair takes place in the time 
period designated by the colour of the edge joining the pair. If only q(G) 
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coloLirs are used for the edge-colouring, then as few time periods as 
possible are used.

The round-robin tournament problem then corresponds to construct
ing an edge-colouring of Kn with q(Kn) colours, possibly with the colour 
of some edges prescribed. We consider this problem, as well as that of 
completing partial symmetric latin squares, in Section 6, where we pre
sent two new results and some corollaries that we have recently obtained 
with A. J. W. Hilton and E. Mendelsohn, respectively. We only sketch 
the proofs; they are too complicated to be included here and will appear 
elsewhere.

Given an edge-colouring of Kn with q(Kn) colours it is easy to con
struct a symmetric latin square of side n. Let the vertices be Vi,...,Vn and 
place the colour of the edge VjVj in cells (i,j) and (j,i), l^i<j^n. If n is 
odd, place the colour not occurring at the vertex Vi in cell (i,i) and if n is 
even, place the colour n in all cells (i,i), l^i=Sm. This is easily seen to be a 
symmetric latin square of side n. Actually, if n is even we can obtain a 
symmetric latin square of side n-1 also by deleting the last row and 
column and placing the entry of cell (n,i) in cell (i,i) instead, l^i^n-1.

We close this introductory section by noting that also the problem of 
completing partial latin squares with no symmetry required has a graph 
analogue. A graph G = (V,E) is called bipartite if V can be partitioned 
into two disjoint sets L and R such that each edge joins a vertex of L to a 
vertex of R. If each vertex from L is joined to each vertex from R then G 
is a complete bipartite graph, and it is denoted by Km n where m — |L| and 
n = (R). For any bipartite graph G, q(G) = d(G) (König 1936). A latin 
square of side n is equivalent to an edge-colouring of Kn n with n colours 
simply by considering cell (i,j) to be an edge joining vertices A and n 
where L = and R = {r15...,rn}, and l^i^n,l^j^n. So com
pleting a partial latin square of side n to a latin square of side n is 
equivalent to finding an edge-colouring of Kn n with n colours, with the 
colour of some edges being prescribed.

The author is aware that this introduction has been much more diffuse 
(and longer!) than is usual for a mathematical research paper, even for a 
survey paper. This is due to the context in which this paper appears, a 
context enhancing the possibility that non-mathematicians may stumble 
upon the paper. It has been the purpose of the introduction to give such 
non-professionals an opportunity of getting an impression of the subject 
and of getting some idea of the contents of the paper. We shall not keep 
up this style in the remainder of the paper. We intend to survey part of 
the enormous amount of material on completions of partial latin squares, 
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with emphasis on the results already mentioned in this introduction, and 
from now on we shall use standard terminology without defining all the 
concepts used. Quite often the definitions can be found in the references 
that we give.

2. The complexity of completing partial Latin Squares

For the theory of NP-completeness we refer the reader to one of the 
excellent books on the subject (Garey & Johnson 1979). Here we remark 
that the class of decision problems which can be solved by polynomial 
time algorithms is called P, and that P C NP, where NP is a class of 
problems containing several apparently very difficult problems unlikely 
to be solvable in polynomial time (here, a polynomial time algorithm is 
considered ‘good’, problems which cannot be solved in polynomial time 
are considered ‘hard’, and a ‘problem’ should not be confused with an 
‘instance’ of a problem). It is not known whether P = NP, but it is 
considered extremely improbable.

A subclass of NP consists of the NP-complete problems. Any NP- 
complete problem has the property that if it can be solved in polynomial 
time then P = NP. So no NP-complete problem is expected to be 
solvable by a polynomial time algorithm.

C. J. Colbourn has been interested in the complexity of completing 
partial latin squares. He first proved that completing partial symmetric 
latin squares is NP-complete (and used this to prove that embedding 
partial Steiner triple systems is NP-complete as well) (Colbourn 1983). 
Shortly afterwards, Colbourn proved that also completing partial latin 
squares is NP-complete (Colbourn 1984). We sketch his proof for partial 
latin squares and use that result to present a new, simpler proof for the 
symmetric case.

The investigation of the complexity of completing partial latin squares 
makes use of another link between latin squares and graph theory, differ
ent from the connection described in Section 1.

A graph G = (V,E) is called tripartite if V can be partitioned into three 
mutually disjoint sets VJ, V2 and V3 such that the end-vertices of each 
edge of E are in distinct sets. If each pair of vertices from distinct sets are 
joined by an edge, G is said to be a complete tripartite graph, and it is 
denoted by K/ rn n where / = |V]|, m — |V2I and n = |V3|. It is easy to see 
that a latin square of side n is equivalent to a decomposition of Kn n n into 
mutually edge-disjoint K3’s; just let V15 V2 and V3 be the set of rows, 
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columns and symbols respectively, and identify an occurrence of the 
symbol k in cell (i,j) with the K3 with vertices corresponding to row i, 
column j and symbol k. This idea is exploited in the following.

It is known that the problem of determining whether a graph can be 
decomposed into mutually edge-disjoint K3’s is NP-complete (Holyer 
1981a). Modifying the proof of this, Colbourn obtained:

Theorem 2.1. Deciding whether a tripartite graph can be decomposed 
into mutually edge-disjoint K3’s is NP-complete.

A tripartite graph is uniform if each vertex has the same number of 
neighbours in each of the vertex classes not containing it. If a tripartite 
graph is not uniform, then it is obvious that it cannot be decomposed 
into mutually edge-disjoint K3’s. So we have

Corollary 2.2. Deciding whether a uniform tripartite graph can be de
composed into mutually edge-disjoint K3’s is NP-complete.

Now let G = (V,E) be a tripartite graph with vertex classes {r1?...,rx}, 
{ci,...,cy} and {s1,...,sz}. A latin framework LF(G;s) for G, s max 
{x,y,z}, is a partial latin square of side s on symbols l,...,s with the 
following properties:

(i) Cell (i,j) of LF(G;s) is empty if and only if pcj E E.
(ii) If pst E E then k does not occur in row i of LF(G;s).
(iii) If CjSk E E then k does not occur in column j of LF(G;s).

Colbourn proved that G always has a latin framework with s = 2|V|:

Theorem 2.3. Given a uniform tripartite graph G with n vertices, a latin 
framework LF(G;2n) can be produced in polynomial time.

With this, it is an easy matter to prove the main result of this section.

Theorem 2.4. Deciding whether a partial latin square of side n can be 
completed to a latin square of side n is NP-complete.

Proof. The problem is clearly in NP. To prove that it is NP-complete, 
by Corollary 2.2 it suffices to reduce the problem of decomposing a 
uniform tripartite graph into mutually edge-disjoint K3’s to the problem 
of completing a partial latin square, the reduction taking place in polyno
mial time. But this can be done by Theorem 2.3 and the observation that
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Figure 3

S(P):

Sn P

PT Sn

G can be decomposed into mutually edge-disjoint K3’s if and only if 
LF(G;2n) can be completed to a latin square of side 2n. We leave this 
argument to the reader (note that (i) and the uniformity of G imply that 
the converse of (ii) also holds: if k does not occur in row i, then qs^ G E).

From Theorem 2.4 we get a new proof of the next theorem.

Theorem 2.5. Deciding whether a partial symmetric latin square of side n 
can be completed to a symmetric latin square of side n is NP-complete.

Proof. Obviously the problem belongs to NP. For any n, let Sn be any 
symmetric latin square of side n on symbols n+l,...,2n. If P is any 
partial latin square of side n on symbols l,...,n, let S(P) be the partial 
symmetric latin square of side 2n on symbols l,...,2n indicated in Figure 
3.

Clearly S(P) can be constructed in polynomial time, and clearly S(P) can 
be completed to a symmetric latin square of side 2n if and only if P can be 
completed to a latin square of side n. Thus we have obtained a polyno
mial time reduction from completion with no symmetry to completion 
with symmetry, and Theorem 2.5 follows from Theorem 2.4.

It follows from the proof of Theorem 2.5 that completing partial sym
metric latin squares is NP-complete even when restricted to the class of 
squares which are as in Figure 3, a class which at first sight might look 
rather limited.

Colbourn’s original proof of Theorem 2.5 made use of the following 
result, which we include for completeness (Holyer 1981b):

Theorem 2.6. It is NP-complete to determine the chromatic index of a 
graph G. In fact, it is NP-complete even to determine the chromatic 
index of a graph which is regular of degree 3.
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The moral of this section is that it is probably a desperate undertaking to 
try giving a simple characterization of those partial latin squares of side n 
that can be completed to a latin square of side n. So it seems reasonable 
that most of the research in the area has concentrated on determining 
families of partial latin squares that can be completed. The next sections 
contain many examples of such families. Let us make it clear, however, 
that when we prove, or state without proof, that a partial latin square of 
a certain type can be completed, we do not present an algorithm for 
actually doing so. As a general rule, our existence proofs are not very 
constructive.

3. Embedding results

We have seen that not all partial latin squares can be completed, in the 
sense that not all partial latin squares of side n can be completed to a latin 
square of side n. A natural question to ask then is whether a partial latin 
square of side n can always be completed to a latin square of side t for 
some t > n? In the same paper as where the Evans Conjecture was posed, 
Evans proved that the answer is affirmative, and that any t^2n will do 
(and for each n^4 he gave examples where no t<2n-l works) (Evans 
1960).

When we have a completion as above, we say that the partial latin 
square P can be embedded in the larger latin square S. Usually we think of 
P as being situated in the top left hand corner of S, as in Figure 4.

There are two ways of looking at the situation of Figure 4. One is as 
described above, a straightforward embedding of a partial latin square P 
of side n in a latin square S of side t. The other sees it as a completion of a 
partial latin square of side t, where all non-empty cells just happen to 

S

example:
1 2

3
2 1

P

S

1 2 4 6 5 3
5 4 3 2 6 1
2 1 5 3 4 6
3 6 2 5 1 4
4 3 6 1 2 5
6 5 1 4 3 2

Figure 4
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occur inside an nXn subarray. The former seems the more appropriate, 
but allows only n distinct symbols to occur in P, whereas the latter 
would allow all t symbols to do so. We compromise and choose embed
ding terminology, but allow t symbols to occur in P. Hence we shall 
speak of a partial latin square of side n on t symbols.

As mentioned in the introduction, our main interest will be some 
completion theorems in the vein of the Evans Conjecture, and our sur
vey of embedding results will be brief. The reader will be able to find 
more on this topic in the recent survey paper by C. C. Lindner (Lindner 
1984).

Before we begin listing results, we need one more definition. Follow
ing Lindner, an rXs latin rectangle on symbols l,...,n is an rXs array in 
which each cell contains an element of {l,...,n}, such that each symbol 
occurs at most once in each row and column. Note that this also applies 
to the case r=s, so that an rXr latin rectangle has no empty cells, and yet 
it need not be a latin square!

If R is a latin rectangle on symbols l,...,n we let R(i) denote the 
number of occurrences of the symbol i in R, l^i^n. We first prove a 
lemma which contains a necessary condition for embedding that appears 
in a variety of situations.

Lemma 3.1. Let R be an rXs latin rectangle which is embedded in a latin 
square S of side n on symbols l,...,n, and let D be as in Figure 5. Then 
R(i) = r + s —n + D(i) for all i, l^i^n.

Proof. Follows from the facts that for all i, R(i) + B(i) = s and B(i) + D(i) 
= n~ r.

If an nXn array S is partitioned as in Figure 5, and if R is rXs, then the 
diagonal outside R is the set of cells (r+l,s+1), (r+2,s + 2),...,(r+n —s,n) if 
r^s, and the set of cells (r+l,s+l),(r+2,s+2),...,(n,s+n—r) if r^s. They 
all lie in D.

The strongest embedding result we have when no symmetry is re
quired is the following (Andersen & Hilton 1983). It is concerned with 
embedding of a latin rectangle with the additional requirement that the 
diagonal outside R is prescribed (each symbol i must occur f(i) times on 
it). The Figures lc and lb give an example of such an embedding. 
However, if r = s then for Theorem 3.2 to work at least one cell on the 
diagonal must be left unprescribed (Andersen, Häggkvist, Hilton & 
Poucher 1980).
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R A

B D

Figure 5

Theorem 3.2. Let R be an rXs latin rectangle on symbols l,...,n, and for 
each i, l=Si^n, let f(i) be a non-negative integer such that S f(i) 
min{n—r,n — s} with strict inequality if r=s. Then R can be embedded in 
a latin square of side n with symbol i occurring at least f(i) times on the 
diagonal outside R for all i, l^i^n, if and only if

R(i) r+s—n+f(i) for all i, Ki^n.

From Theorem 3.2 it is easy to deduce some wellknown results.

Corollary 3.3. (Ryser 1951). An rXs latin rectangle R on symbols l,...,n 
can be embedded in a latin square of side n if and only if

R(i) r+s—n for all i, l=Su^n.

Proof. Put all f(i) equal to zero in Theorem 3.2.

Corollary 3.4. (Evans 1960). A partial latin square of side n on t symbols 
can be embedded in a latin square of side t for all t 3= 2n.

Proof. All empty cells of the partial latin square can be filled with one 
of the t symbols, as at most 2(n—1) symbols can be forbidden for a given 
cell. Now apply Corollary 3.3, where the condition is satisfied because 
R(i) 0 2n-t.

The condition t 2n is best possible, as we remarked earlier.

Corollary 3.5. (Hall 1945). An rXn latin rectangle on n symbols can 
always be completed to a latin square of side n.

A time-table for all meetings between pairs of persons, one belonging to 
a set of r persons and the other to a set of n>r persons disjoint from 
the first set, in as few time periods as possible, corresponds to an rXn 
latin rectangle on n symbols (and to an edge-colouring of Krn with n 
colours). Corollary 3.5 shows that trying to complete such a time-table 
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with some preassigned entries is equivalent to trying to complete to a 
latin square of side n.

Theorem 3.2 does not hold with r=s and 2 f(i) = n—r, i.e. with com- 
i=l

pletely prescribed diagonal. This is unfortunate, because a frequent re
quirement on a latin square is that it is idempotent, meaning that cell (i,i) 
contains the symbol i for all i. No necessary and sufficient condition for a 
latin rectangle to be embeddable in an idempotent latin square is known, 
which is valid in all cases. Problems concerning this have been extensive
ly studied (Lindner 1971; Hilton 1973; Andersen 1982; Hilton & Rodger 
1982; Rodger 1983; Andersen, Hilton & Rodger 1983; Bryant 1984). We 
state only two results, the first very important theorem due to 
C. A. Rodger giving a necessary and sufficient condition for the case r=s 
and n 2r+l (and r^ 10).

Theorem 3.6. (Rodger 1984). Let R be an rXr latin rectangle on symbols
l,...,n  where r 10 and n 2r+l. For each i, l^i^n, let f(i) be a non
negative integer such that S]f(i) = n —r. Then R can be embedded in a 
latin square of side n with each symbol i occurring f(i) times on the 
diagonal outside R for all i, l^i^n, if and only if (i)-(iii) are satisfied.

(i) R(i) 2r —n + f(i) for all i, l^i^n.
(ii) For all i, l^i^n: if R(i) = r then f(i)4=n—r—1.
(iii) If R is a latin square and n=2r+l then 2 f(i)=t=l.

R(i)>0

For n 10, the next theorem is a corollary of Theorem 3.6.

Theorem 3.7. (Andersen, Hilton & Rodger 1982). A partial idempotent 
latin square of side n can be embedded in an idempotent latin square of 
side t for all t 2n+l.

When Theorem 3.7 first appeared it settled a long standing conjecture in 
the affirmative. The inequality t 5= 2n+l is the best possible.

Turning now to embedding theorems for partial symmetric latin 
squares we first present a new result due to A. J. W. Hilton and the 
author. It is used in the proof of one of the main results of Section 6; in 
this paper we state both theorems without proofs. Because of the close 
connection between symmetric latin squares and edge-colourings of 
complete graphs, it is useful to consider embedding of a symmetric latin 
rectangle R in a symmetric latin square S where both entries of S on the 
diagonal outside R and entries of S corresponding to independent edges
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p

Figure 6

outside the complete subgraph determined by R are prescribed. This can 
be pictured as in Figure 6.

Theorem 3.8. Let P be a partial symmetric latin square of side n on 
symbols l,...,n, and let P be of the form of Figure 6 with the non-empty 
cells being exactly all cells of R, the back diagonal of B and the diagonal 
of D. Here R is an rXr symmetric latin rectangle and B has even side. 
Some of R, B, D, and E may have side zero, but if B has positive side, 
then so has E. For all i, l^i^n, let f(i) be the number of times the symbol 
i occurs in B U D.

Then P can be completed to a symmetric latin square of side n if and 
only if (i) and (ii) hold.

(i) R(i) 2r—n+f(i) for all i, l^i^n.
(ii) R(i) + f(i)=n (mod 2) for at least r+d different 
i G n}, where d is the side of D.

If n is odd, condition (ii) reduces to requiring that all symbols on the 
diagonal of P are distinct.

Theorem 3.8 extends a known result with B and E not appearing 
(Hoffman 1983; Andersen 1982). This in turn generalized a wellknown 
theorem due to A. B. Cruse.
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Corollary 3.9. (Cruse 1974). Let R be an rXr symmetric latin rectangle on
l,...,n.  Then R can be embedded in a symmetric latin square of side n if 
and only if

R(i) 2r—n for all i, l^i^n, and
R(i) = n (mod 2) for at least r different i G {l,...,n}.

Proof. Put f(i) = 0 for all i, l^i^n, in Theorem 3.8.

Cruse also obtained the following results. They are easy consequences of 
Corollary 3.9. All inequalities are best possible.

Corollary 3.10. A partial symmetric latin square of side n on t symbols 
can be embedded in a symmetric latin square of side t for all even t 2n.

Corollary 3.11. A partial symmetric latin square of side n on t symbols, in 
which each symbol occurs at most once on the diagonal, can be em
bedded in a symmetric latin square of side t for all t 2n.

Corollary 3.12. A partial symmetric idempotent latin square of side n on t 
symbols can be embedded in a symmetric idempotent latin square for all 
odd t 2n+1.

4. Outline of the proofs of the next sections, 
and some lemmas

In the next section we shall characterize all partial latin squares of side n 
with at most n+1 non-empty cells that cannot be completed to a latin 
square. In Section 6 we do the same for partial symmetric latin squares. 
We only give a complete proof in the non-symmetric case, but the 
course of proof is fairly similar for both results. We now give a very 
broad outline of these proofs, and the remainder of this section will be 
devoted to some rather technical lemmas to be used.

Both proofs are by induction on n, and the general induction step is as 
follows. We take the partial square P which is to be completed, delete the 
entry of one or two cells to obtain a partial latin square P’ of smaller side, 
satisfying our conditions. Then we complete P’ by the induction hy
pothesis. We now partition the completion as in Figure 5 or Figure 6 so 
that all non-empty cells of P are in R, on the diagonal outside R or, in the 
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symmetric case, on the back diagonal of B of Figure 6. We then intro
duce the missing symbol or symbols in R in such a way so as to be able 
to apply Theorem 3.2 or Theorem 3.8 to embed R in a latin square of 
side n, which will then be a completion of P.

This is a very brief description of the proofs, leaving out a large 
number of details and of cases not fitting into the general pattern, but 
hopefully it gives the reader some motivation to try understanding the 
lemmas of this section.

The first lemma (Andersen and Hilton 1983) will be used in obtaining 
bounds on the latin rectangle R. A cell of a partial latin square (or of any 
array) is called diagonal if it is the sole non-empty cell in its row and its 
column. In Figure 6, all cells of B U D are diagonal.

Lemma 4.1. Let R be an rXs array containing exactly q non-empty cells 
of which none are diagonal, and having no empty row or column. Then 

r+s« L-4J.

Proof. Let r2 be the number of rows with at least 2 non-empty cells. 
Then 2r2 + (r—r2) q, implying r q — r2. Each column of R contain
ing no cell from these r2 rows must contain at least 2 of the remaining r 
— r2 cells, and so s V2(r—r2) + q — (r—r2) = q — ^(r—r2), implying 2s 
+ r 2q + r2. Therefore 2(r+s) q — r2 + 2q + r2 — 3q, as required.

If the non-empty cells are symmetrically placed, and if d of them occur on 
the diagonal of R, Lemma 4.1 can be strengthened to 2r J

The next lemmas will be applied in finding the cells of R whose entries 
should be changed into a new symbol used in the completion of P, but 
not in that of P’. In the non-symmetric case, all cells changed in this way 
must have distinct symbols, and they must not be preassigned in P’. A 
partial transversal of a latin rectangle is a set of cells in distinct rows, in 
distinct columns, and containing distinct symbols. The length of a partial 
transversal is the number of cells.

Lemma 4.2. Let R be an xXy latin rectangle and assume that R contains p 
forbidden cells with at least one in each column, and that

(p + l-x) (p-y) p > 0

Let s be one of the symbols of R.



40 LARS DØVLING ANDERSEN

Then R has a partial transversal of length t x + y —p avoiding all
forbidden cells and all cells containing the symbol s.

Proof. Let R be on the symbols 1, n. From the assumptions p y, 
so the inequality gives p > y and p x. Now p = x would imply p — y 5= 
p which is impossible. So we have x < p and y < p. Let t be the length of 
a maximum partial transversal avoiding the forbidden cells and the sym
bol s. The result is true ift^x — lort^y — l,so we now assume that t

x — 2 and t y — 2. Then t p — 3.
We consider a partial transversal of length t with the required proper

ties. We can assume that it consists of cells (1,1), •••, (t,t) with entry i in 
cell (i,i), 1 i t (so that s > t). By the maximality, no symbol from 
{t+1, ..., n} \{s} can occur in rows t + 1, ..., x of columns t+1, ..., y 
except in forbidden cells.

Let

Ao = 0
Aj = {iE {1, ..., x}|cell (i, t+j) is not forbidden and its entry/ E (Aj_j U 

{t+1, ..., n})\{s}}, l^j^y-t.

Define an oriented graph G on vertices

Ü (Aj x {t+j})

(corresponding to some cells in the last y-t columns) and edges

{((a,t+j), (b,t+k)) I j < k and cell (b,t+k) contains the symbol a).
We claim:

(*)  For all j, 1 j y — t : {t+1, ..., x} A Aj = 0.

Proof of (★): Suppose that (*)  fails. Then G contains a vertex (aJ5 t+j) 
with aj E {t+1, ..., x} and 1 j y — t. It follows from the definitions 
that G contains a directed path ending in (ap t+j) and starting in a vertex 
(ak, t + k) with k < j, where cell (ak, t + k) has an entry from {t+1, ..., n} 
\{s}.

Let (go, t+i0), (gt, t+i]), ..., (g/, t+iz) be a shortest directed path of G 
with the property that the entry of cell (g0, t+i0) is in {t+1, ..., n}\{s} 
and g/ E {t + 1, ...., x}. So gk t for 0 k ^ / — 1.

Then the cells

(gk, t+ik), 0 s? k sS/, and
(j , j) , 1 j < t , j + gk for 0 + k 5S/-1, 
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form a partial transversal of length t+1, contradicting the maximality of 
t. We prove that these t+1 cells do indeed form a partial transversal 
satisfying the requirements:
(i) By definition, the cells are in R, they are not forbidden and their 

entries are different from s.
(ii) The cells are in distinct rows, because otherwise we would have gh 

= gk for some h < k, where k + / as gh t < gz , and then the entry 
of cell (gk+1, t+ik+1) would be gk = gh, so that (g0, t+i0), ..., (gh, 
t+ih), (gk+1, t+ik+i), ..., (gz, t + iz) would be a shorter path.

(iii) The cells are obviously in distinct columns.
(iv) The entries are distinct, namely {1, ..., t} and the entry of (g0, 

t+i0). This completes the proof of (*).
Let pj be the number of forbidden cells and ôj the number of occur

rences of the symbol s in the column j, for 1 j y. Then pj 5= 1 by 
assumption, and ôj G {0,1}.

From the definition of Aj and from (*)  we get

|Aj| 25 x - (t-lAj.J + ôt+j+pt+j)

giving

By (*)> I Ay-tl^ t,

and F
j=l

ôt+j y-t we get

t + (y-t) (x-t) - (y-t) - (p-t)

and, introducing the condition of the lemma, 

0 p - (y-t) (x-t-1)
(p+l-x) (p-y) - (y-t) (x-t-1)

= (t-x-y+p+1) (p-t).

If we have strict inequality somewhere in these calculations, we get 
t—x —y + p+1 > 0 (as p —t2=3) implying t 5= x + y—p as required. So 
assume that t = x+y —p—1 and that we have equality; in particular Pj = 1 
for 1 j + t, (y—t) (x—t— 1) = p and | Ay_t| = t, from which we deduce 
that column y has no forbidden cell and no cell containing s among the 
first t cells. By the maximality of t, this must be true with any ordering 
of the last y-t columns, so in fact it holds for each of columns t+1, ..., y. 
We now prove
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(**)  Each entry in any of the first t cells of any of the last y-t columns 
belongs to {1, t}.

Proof of f**):
As p > y we may assume that pk 5= 2 for some k, t + 1 k y. If some 
cell (i,k), 1 i t, contains a symbol u > t, we can replace (i,i) of our 
partial transversal with (i,k), and we no longer have p, = 1 for all col
umns j containing a cell from the transversal. Assume next that some cell 
(i,/) contains a symbol u > t, where 1 i t and t + 1 y, 7 4= k. 
Some cell of column k contains the symbol i, say cell (j,k). Then 1 j 
t, j 4= i, and replacing cells (i,i) and (j,j) by (i,/) and (j,k) we obtain the 
same contradiction as before. This proves (**).

It follows from (**)  that the cells common to the last x — t rows and 
the last y — t columns contain symbols greater than t. Any such cell can 
be added to the partial transversal unless it is forbidden or contains s. So 
we get

(x-t) (y-t) < (p-t) + (y-t)

contradicting (y — t) (x —t—1) = p, and so Lemma 4.2 has been proved.

Lemma 4.2 strengthens a result due to A. J. W. Hilton and the author 
(Andersen & Hilton 1983). The similar lemma for the symmetric case is 
most easily stated in graph terminology. A path system of a graph is a 
subgraph consisting of disjoint paths. As we only aim at sketching the 
proof in the symmetric case we state the lemma in a form less complicat
ed than what is needed in the proof.

Lemma 4.3. Let 4 r 3n~6 and let Kr have an edge-colouring with 
4 n 4-1any number of colours. Let F be a set of at most —— forbidden edges 

of Kr such that each vertex is incident with an edge of F. Let M be a set of 
at most 2 mandatory edges of Kr, disjoint from F and not containing 2 
edges of the same colour.

Then Kr contains a path system containing all edges from M and no 
edge from F, with all edges having distinct colours, and with at least 2r-n 
edges.

The proofs of Lemmas 4.2 and 4.3 have been inspired by work on the 
existence of long partial transversals in latin squares (Drake 1977; Brou
wer, de Vries & Wieringa 1978; Woolbright 1978). It can be proved that 
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an edge-coloured Kn has a path system with all edges having distinct 
colours with at least n — V2n edges (Andersen 1985).

5. Completion of partial Latin Squares

This section is primarily devoted to characterizing those partial latin 
squares of side n with at most n+1 non-empty cells which cannot be 
completed to a latin square of side n, thus extending the knowledge 
gained from previous proofs of the Evans Conjecture.

A forerunner for the complete proofs was a paper by R. Häggkvist, 
where he proved that the conjecture is true for n > 1111 (Häggkvist 
1978); we shall use one of Häggkvist’s lemmas in our proof. The proof 
of B. Smetaniuk was based on a remarkable completion theorem, which 
we state below (although we shall not apply the result here).

Theorem 5.1. (Smetaniuk 1981). Let A be any latin square of side n on 
symbols l,...,n, and let P(A) be the partial latin square of side n+1 on 
symbols l,...,n+l in which, for all i,j, l^i^n + 1, l^j^n+l, cell (i,j) 
contains the entry of cell (i,j) of A if (i,j) is above the back diagonal of 
P(A) (so that l^j<n+2—i), cell (i,j) contains the symbol n + 1 if (i,j) is on 
the back diagonal of P(A) (j=n+2—i), and otherwise cell (i,j) is empty.

Then P(A) can be completed to a latin square of side n+1.

Smetaniuk actually gave a specific algorithm for completing P(A), and 
he showed that if A+B, then the completions of P(A) and P(B) obtained 
in this way are also different. It follows that the number of latin squares 
of side n is a strictly increasing function of n (Smetaniuk 1982).

The proof of the Evans Conjecture by A. J. W. Hilton and the author 
also proved that a partial latin square of side n with exactly n non-empty 
cells can be completed unless it is of the form of one of the partial squares 
of Figure 7, l^y^n—1, (i.e., by permuting the rows, permuting the 
columns and renaming the symbols it can be transformed into one of 
these squares). This was actually conjectured to be true by D. Klarner in 
1970 in a conversation with Hilton. In 1983 R. M. Damerell showed that 
it can be proved using Theorem 5.1 (Damerell 1983).

The theorem that we shall prove in this section states that if a partial 
latin square of side n with n+1 non-empty cells cannot be completed 
then it is of the form of one of the squares of Figure 8, or n=4 and it is as 
in Figure 9, or it contains one of the squares of Figure 7.
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Fig.7

We call a partial latin square of side n with at most n+1 non-empty 
cells bad if it has n or n+1 non-empty cells of which n cells form a square 
of the type of one of the squares of Figure 7, l^y^n—1, or it has n+1 
non-empty cells forming a square of the type of one of the squares of 
Figure 8 or Figure 9; otherwise we call it good. If a good partial latin 
square of side n^2 has less than n+1 non-empty cells, we Can fill further 
cells so as to obtain a good square with exactly n+1 non-empty cells.

It is easy to see that a bad partial latin square of side n cannot be 
completed to a latin square of side n; we leave this little exercise to the 
reader.

In section 2, it was explained how a latin square of side n corresponds 
to a decomposition of Kn n n into mutually edge-disjoint K3’s. It follows 
from this that there is symmetry among rows, columns and symbols. 
For example, if S is a latin square of side n and S’ is obtained from S by 
placing the symbol j in cell (i,k) whenever S contains the symbol k in cell 
(i,j), l=Si^n, l^j^n, l^k^n, then S’ is also a latin square of side n. We 
say that S’ is obtained from S by interchanging columns and symbols. Simi
larly, other permutations of (rows, columns, symbols) give rise to latin 
squares. We call these conjugates of S. Conjugates of partial latin squares 
are defined in the same way.

Clearly, a partial latin square of side n can be completed to a latin 
square of side n if and only if any one of its conjugates can.

In Figures 7 and 8, partial latin squares in the same row are conjugates 
of each other. All conjugates of the square of Figure 9 are of the same 
form.

The proof in this section is very similar to that of A. J. W. Hilton and 
the author for the case of n non-empty cells. Some proofs are almost 
identical, others are a bit more complicated in this paper.
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We first verify the result in a particular case where the general proof 
does not work.

Fig. 9 1 2
1

3
4

Fig. 8

Type 10 (n>5) Type 11 (n>5) Type 12 (n>5)
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Lemma 5.2. If P is a good partial latin square of side n with n+1 non
empty cells such that each row and each column contains a non-empty 
cell, and each of symbols l,...,n occurs in P, then P can be completed to 
a latin square of side n.

Proof. If we pick n non-empty cells of P belonging to distinct rows, 
then at most 2 of them can belong to the same column. It follows that P 
contains at least n— 1 non-empty cells belonging to distinct rows and 
distinct columns. We can distinguish between two cases, according to 
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whether n such cells exist or not. Considering the different positions for 
the unique symbol occurring twice, we see that P must be of the form of 
one of the partial latin squares of Figure 10.

We prove cases la, lb and 2a simultaneously. First for n^ll. By 
Theorem 3.7 there is an idempotent latin square S5 of side 5 with diago
nal 1,2,3,4,5, and by the same theorem there is an idempotent latin square 
of side n on symbols l,2,...,n with S5 in the top left hand corner. If we 
replace this S5 by the latin square of side 5 in Figure 11, we still have a 
latin square, and it clearly is a completion of the squares of cases la, lb, 
and 2a. For 5^n^l0 completions of all 3 cases are shown in Figure 11. 
For n=4 case la gives a bad square, and cases lb and 2a are easily 
completed. For n=3 all three cases give bad squares (and for n=2 only 
case la applies and is trivial).

Case lc also follows from the above constructions (for all n^5, the 
symbol 2 not on the diagonal can be found in the row of the diagonal 4, 
in column 5 or 6). For n=4, case lc gives a bad square.

Case Id is obvious, it follows from the existence of idempotent latin 
squares of side n for all n5=3.

Case 2b yet again follows from Figure 11 and the construction related 
to it (for 6^n^l0, one of symbols 5 and 6 is repeated rather than the 
symbol 4). For n=4, case 2b gives a bad square.

Case 2c only applies for n^5, and here we copy the argument for the 
first three cases, but with the latin squares of Figure 12.

1 2 5 3 4
5 14 2 3
2 4 3 5 1
3 5 14 2
4 3 2 1 5

1 2 6 5 4 3
3 1 5 6 2 4
2 4 3 1 6 5
5 6 1 4 3 2
6 3 4 2 5 1
4 5 2 3 1 6

1 2 5 7 4 3 6
3 1 6 5 7 4 2
2 4 3 1 6 7 5
5 6 7 4 3 2 1
6 7 4 2 5 1 3
7 5 2 3 1 6 4
4 3 1 6 2 5 7

Figure 11

1 2 5 7 8 9 6 4 0 3
3 1 6 8 7 4 9 0 2 5
2 4 3 1 6 0 5 9 7 8
9 6 0 4 3 2 8 1 5 7
8 7 9 0 5 1 3 6 4 2
7 5 8 3 9 6 0 2 1 4
4 0 2 6 1 5 7 3 8 9
6 9 4 5 0 7 2 8 3 1
0 8 7 2 4 3 1 5 9 6
5 3 1 9 2 8 4 7 6 0

125789643
316874952
243168597
967432815
879251364 
758396421 
492615738 
534927186 
681543279

1 2 5 7 8 3 6 4
3 1 6 8 7 4 2 5
2 4 3 1 6 8 5 7
5 6 7 4 3 2 8 1
8 7 4 2 5 1 3 6
7 5 8 3 1 6 4 2
4 8 1 6 2 5 7 3
6 3 2 5 4 7 1 8
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5 3 4 1 2
1 2 5 4 3
4 5 3 2 1
3 12 5 4
2 4 13 5

2 6 4 3 1 5
1 2 5 6 4 3
5 1 3 2 6 4
3 4 6 5 2 1
6 3 1 4 5 2
4 5 2 1 3 6

2 6 4 3 7 5 1
1 2 7 6 4 3 5
5 1 3 2 6 7 4
7 4 6 5 2 1 3
3 7 2 1 5 4 6
4 3 5 7 1 6 2
6 5 1 4 3 2 7

2649058137 
1276905348 
5132870 9 64 
7865293401 
3981 546072 
4508361729 
9 014 6 27583 
6420739815 
03571 84296 
8793412650

26497581 3 
127698534 
513287496 
786529341 
398154627 
459836172 
931462758 
672341985 
845713269

Figure 12

2 6 4 3 7 5 8 1
12 7 6 4 8 5 3
5 1 3 2 8 7 4 6
7 8 6 5 2 1 3 4
3 7 8 1 5 4 6 2
4 5 2 8 3 6 1 7
8 3 1 4 6 2 7 5
6 4 5 7 13 2 8

This completes the proof of Lemma 5.2.

Lemma 5.4 below is a strengthening of a very useful result due to 
C. C. Lindner, which was used also by Smetaniuk and by Damerell 
(Lindner 1970). We first state another lemma; a 1-factor of a graph G is the 
edge-set of a subgraph F with the same vertex set as G and with each 
vertex having degree 1 (sometimes the term 1-factor is used for the 
subgraph itself and not just the edge-set).

Lemma 5.3. (Häggkvist 1978). Let G be a regular bipartite graph of 
degree m with 2n vertices. Let B] be a set of b] independent edges, and 
let B2 be a set of b2 edges disjoint from B,. If m-b1^1/2(n—1) and 
bi+b2^m—1, then G contains a 1-factor F such that BjCF and FPlB2=0.

Lemma 5.4. Let P be a good partial latin square of side n with exactly n+1 
non-empty cells. Let the number of non-empty cells in row i be q, 
l=Si=Sn, and assume that r1^r2^...^rn=0. Then the first [^(n+ljj rows 
of P can be completed.

Proof. The particular case where n = 4, r! = r2=2 and r3=l turns out to 
be an exception in several arguments. Rather than go through all the 
details every time the exception is encountered, we ask the reader to 
verify the lemma in this case. So we shall assume that if n=4 then rj =1=2.
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With P we associate a bipartite graph Kn n with vertex classes C and S 
corresponding to columns and symbols respectively. For l=Si=Sn, let 4^ 
be the set of r, independent edges of Kn n corresponding to the non
empty cells of row i, i.e. the edge joining column j and symbol k is in Fk 
if and only ifk is in cell (i,j) of P (l^j^n, l^k^n). Extending B, to a 1- 
factor corresponds to assigning a symbol to each cell of row i.

We first prove that we can complete the first row of P. Let 
G=Kn_r] n_r] be obtained from Kn n by deleting all end-vertices of edges 
of Bb We must find a 1-factor of G, disjoint from the set 
B = (B2UB3U...UBn) DE(G) of at most n+1—rj edges. By a wellknown 
theorem (Hall 1935), it suffices to show that in G-B any k vertices from 
C have at least k neighbours in S altogether, l=Sk=Sm—rb This is true for 
k = n—rj because otherwise B would contain n — ri edges of G incident 
with the same vertex of S, and so P would be a bad square, containing a 
Type 2 square. If it fails for k=n—rj —1, then B must contain all edges 
between 2 vertices of S and the k vertices of C, and so 
2(n—rt — l)^n+1 —ri implying n — r^3; ifn—ri=3 it implies that P is of 
Type 4, 7 or 10, and if n—r]=2 it implies that P contains a Type 1 square 
with y=n—2, both cases contradicting that P is good. Hall’s condition 
cannot fail for a k with 3^k^n—rj—2, because then B would contain at 
least k(n—q—k + 1) > n—^ + 1 edges. If it fails for k=2 we would get 
n—r^3 as above, and so k=n—T] or k=n—rj —1, both cases covered 
above. Finally, if it fails for k=l then P contains a Type 1 square, which 
is a contradiction. Thus we have proved that the first row can be com
pleted.

Now suppose that we have a sequence of graphs G0,G1,...,Gp, where 
G0=Kn n and, for l^r^p, Gr=Gr_1—Fr, where Fr is a 1-factor of Gr_! 
containing Br and disjoint from Br+1,...,Bn. This corresponds to p rows 
having been completed. The sequence exists for p = l. We assume that 
p< [^(n+ljj and want to extend the sequence by finding a 1-factor Fp+1 
of Gp containing Bp+1 and disjoint from Bp+2,...,Bn. In most cases, this 
can be done by applying Lemma 5.3; some cases are done separately.

Let G=Gp, bi = rp+1, b2 — and m=n—p. We examine the two
inequalities of Lemma 5.3 one By one.

We must have ^^2 and so

bi + b2 = S r; = n+1 — r, n+1 —(p+1) = n —p = m 
i=p+l i=l

so b]+b2^m— 1 if we have strict inequality. If p5=2 then there is strict 
inequality, because r] + r2^4 as rn=0. If r^3 the strict inequality is also 
satisfied, so we now consider the case p=l, fi=2 separately. Then r2=2, 
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and, by assumption, n#4. We use the same method as we did when 
completing the first row. Let G’ be obtained from G by deleting the end
vertices of the edges of B2, and all edges of B=(B3U...UBn). Then G’ is 
Kn_2,n-2 with a set of at most n—2 independent edges (from Ft) and a set 
of at most n — 3 further edges deleted. We use Hall’s condition to find a 1- 
factor of G’, considering k vertices of C, l^k^n—2. If it fails for 
k = n—2, then all edges incident with some vertex of S have been deleted, 
corresponding to having a partial latin square as in Figure 13. But then 
the symbol 3 in the first row is not preassigned, because if it were, P 
would contain a Type 2 square with y=2. It follows that we can change 
the first row so as to place 3 elsewhere, as P is not of Type 6, 9 or 12. If 
the Hall condition fails for k—n—3 then at least 2(n—3) edges incident 
with 2 particular vertices have been deleted, and as at most 2 of these can 
be in the set of independent edges we get 2(n — 3)^2+ (n — 3) implying 
n—2^3. It follows that we have one of the situations of Figure 14. Then 
we can change the first row so as to have the condition satisfied for k = 2, 
as P is not of Type 4 or 7 (and it will still be satisfied for k = 3 = n —2, as 
Figure 13 does not apply). If 3^k=Sm—4 the Hall condition cannot fail, 
because then n^7 and at least k(n—1—k) —min{k,n—1 —k} edges not 
among the independent edges have been deleted, which implies n^6. If 
the condition fails for k = 2 we can deduce n^5 and so k = n — 3. If it fails 
for k=l then n^5 as the case n=3 and k=n —2 is covered above, and we 
have the situation of Figure 15. Unless the symbol 3 is prescribed in its 
cell, or both symbols 1 and 2 are prescribed somewhere in row 1, we can 
interchange occurrences of 3 and either 1 or 2 to avoid the situation; but 
in these cases P is bad (Type 1 with y=2, Type 5, 8 or 11).

So henceforth, when trying to find the 1-factor Fp+1, we can assume 
that the inequality b1+b2^m —1 holds.

We now consider the other inequality of Lemma 5.3, which in our case 
is rp-n^V^nd-l) — p. As p< [1/2(n4-l)] this is true if rp+l = 1. So assume 
that rp+1^2. If rp^rp+1 + l then r^3 and we get, for p^2,

x X

1 2

Fi£. 13
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Fig. 14
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rp+! = r2^]/2(rt + r2-1 )V2(n- q)^(n +1 ) -p + V2

and for p= 1:

rP+i =r2^1/2(r1 + r2— l/2(n+1)-p+ I/2

so the inequality is true unless r3=r4=...=rn=0 and n is even, ^=^+1 
and r2=^. But in that case we can find a 1-factor directly: delete all end
vertices of edges of B2 from Gg we must find a 1-factor in the remaining 
graph, which is just Ka n with some or all edges of a 1-factor deleted, and 
this can be done by Hall’s condition, because if k5=2 then all vertices in 
the other class is joined to one of the k vertices, and a single vertex (k=l) 
has a neighbour, because ^>1. Il

So we now assume that r =rD+1. If 2 r.^2 then
b H i=p+2

rp+i = 1/2(rP + rp+i)^1/2(n+1_ b-. o ri)^1/2(n+l-2(p-l)-2)
i=l i=p + 2

and the inequality is satisfied. Now assume that S r;=l. Then the in- 
. P“1 i=p+2 1

equality is true if S q > 2(p—1), and if this is not the case, then either
p=l and so rp=rp+i=^, or r1=r2=...=rp+1=2 implying p=^— 1. In both 
cases 11 is even and, by assumption, n^6. In the former case the usual
method works without problems; we now consider the latter case. In
Gp, each vertex has degree ^+1. Let G’ be obtained from G by deleting 
the end-vertices of the two edges of Bp+1 and, if neither of its end
vertices have been deleted, the single edge e of Bp+2. Then each vertex 
has degree at least -5—1 in G’ except possibly the end-vertices of e which 
may have degree 2. Hence Hall’s condition is certainly satisfied for 
k^—2 and also for k=^—1 because 1>1 so there is a vertex not 
incident with e in any set of k vertices. If kS^ then any vertex in the 
other class will be joined to at least one of the k vertices (except possibly 
an end-vertex of e), and the condition holds.
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The only case left to consider in trying to establish the inequality 
rp+1i£d/2(n+1) — p is when rp+2=rp+3=...=rn=0. From before we have 
that rp = rp+i^2. We show that the inequality can fail in four ways, (i) If 
p=l then n is odd and r1 = r2=72(n+l),r3=r4=...=rn=0. If p^2 the ine
quality is true for r^4, as

rp+i = 1/2(rp + rp+1) = T^n+l-^È q) «S 72 (n+1 -q-2(p-2)) =£ 7i(n+l)-p,

so we can assume that r1:$3. If ri=r2=3 then it is satisfied for p^3; but 
we get the exception (ii) p=2, n=8, r1=r2=r3=3, r4=r5=... =r8=0. Fi
nally, we have exceptions (iii) ^=3, r2=r3=... = rp+1 = 2, rp+2=rp+3=...= 
rn=0, p=^-l, n even and n2?6, and (iv) r1 = r2=... =rp+1=2, rp+2=rp+3 = 
...=rn = 0, p= 72(11 — 1), n odd and n^5. In each exceptional case we apply 
Hall’s condition on the usual subgraph of Kn_Ff +] n_r]! to try to find a 1- 
factor.

In case (i) we have Ki/2/n_pi/2(n_q with some independent edges de
leted. Hall’s condition cannot fail unless 72(11 —1) = 1, so that n=3, and if 
it does then P is easily seen to be bad. In case (ii), we have a subgraph of 
K5 5 in which each vertex has degree at least 3, and Hall’s condition is 
easily seen to be satisfied. Case (iii) gives us a subgraph of Kn_2>n_2 in 
which each vertex has degree at least n—2—(4|—1)=-|—1; but then Hall’s 
condition is obviously true for 1, and for it is true because any 
vertex in the other class must be joined to one of the k vertices.

Finally, in case (iv) we are looking at a subgraph of Kn_2 n_2 in which 
each vertex has degree at least n—2— 7>(n— l) = 72(n — 1) — 1. So Hall’s 
condition is true for k^72(n—1) —1. It is also true for k^72(n—1) + 1, 
because in that case each vertex in the other class is joined to one of the k 
vertices. However, the condition may fail for k=72(n—1). If it does, we 
can describe the graph Gp (in which every vertex has degree 72(n+l)) 
very accurately: Let the edges of Bp+1 have end-vertices Cj and c2 in C, Si 
and s2 in S. Then C= {ci,c2} UAUB and S = {s],s2}UTUU, where |A| = |U| 
= 72(n—1), |B| — |T| = 72(n— 1) — 1, every vertex of A is joined to every 
vertex of TU(s],s2}, every vertex of U is joined to every vertex of 
BU{ci,c2} and apart from these edges, Gp contains C]Si,c2s2 and 
72(n—1) —1 independent edges each joining a vertex from B to a vertex 
from T. Figure 16 illustrates the graph Gp and the corresponding partial 
latin square.

It follows from the structure of the graph that the p rows completed so 
far actually have p of the columns forming a latin square. The remaining 
columns form a latin square with one row missing. We can then simply 
find a row which contains a non-preassigned entry from each latin
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Figure 16
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square and interchange the two entries. Then we no longer have the 
situation of Figure 16, and hence we can complete the (p+l)st row. If no 
row contains two such non-preassigned entries, then V2(n —1) = 2 imply
ing n=5, and all cells in the 2x2 latin square are preassigned; but then P 
is of type 4, which is a contradiction.

We have now shown how to complete row p+1 in all cases not satisfy
ing the conditions of Lemma 5.3. If those conditions are satisfied, the 
lemma provides us with the required 1-factor, thus enabling us to fill 
row p+1. This completes the proof of Lemma 5.4.

Corollary 5.5. If P is a good partial latin square of side n with n + 1 non
empty cells, and if P has an empty row and all non-empty cells outside a 
given column lie in [1/2(n + 1)J rows, then P can be completed to a latin 
square of side n.

Proof. By Lemma 5.4, the rows containing the non-empty cells outside 
the given column can be completed, and by Corollary 3.5 the partial 
latin square containing these rows can be completed; but then it is just a 
matter of permuting the remaining rows to get the column right.

Corollary 5.6. A good partial latin square of side n with n + 1 non-empty 
cells, all lying in [p2(n+3)J rows, can be completed to a latin square of 
side n.

Lemma 5.7. Let P be a good partial latin square of side n with n+1 non
empty cells all lying in the top left rXs subarray R or on the diagonal 
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outside R, and assume that s^ [1/2(11+1)J, and that P has an empty 
column.

Then P can be completed to a latin square of side n.
Proof. Figure 5 shows the partition of P. We can assume that R has no 

empty columns. By Lemma 5.4 with rows replaced by columns, the first 
s columns can be completed. By the same argument as in the proof of 
Lemma 3.1 this implies that R(i)^r+s—n+f(i) for all i, l^i^n, where P 
is supposed to be on symbols 1,2, ...,n and f(i) is the number of times that 
symbol i occurs on the diagonal outside R, l^i^n. But then R can be 
completed by Theorem 3.2.

Lemma 5.8. Let P be a good partial latin square of side n with n+1 non
empty cells. If each row contains a non-empty cell, then P can be com
pleted to a latin square of side n.

Proof. By Lemma 5.2, it suffices to consider the case where either P has 
an empty column, or some symbol does not occur in P. We can inter
change columns and symbols if necessary, so assume that P has an empty 
column. Let t be the number of non-empty columns of P, and let v be 
the number of columns with exactly one non-empty cell. By Corollary 
5.6, we can complete P if t=S [1/2(n+3)J, so we suppose that 
t^ [V2(n+3)J+1. Then

t—v=(2(t—v) + v) —t^n+1 — t^n— [l/2(n+3)J — [1/2(11—2)J.

All the non-empty cells outside the t-v columns are in distinct columns, 
and they are also in distinct rows except that one row may contain two 
of them. So all non-empty cells outside s columns are diagonal, where

s^t—v+2^ [1/2(11—2)] +2= [l/2(n+2)J.

So s=S [l/>(n+1)] unless n is even and we have equality everywhere. But 
in that particular case t= [p2(n+3)J +1 = 1/2(n + 4) and 2(t—v) + v = n+1, 
implying v=2t —n—1=3, and two of the three non-empty cells outside 
the t-v columns are in the same row; therefore all non-empty cells not in 
this row are in 1/2(114-4)— 2=^ columns, and so P can be completed by 
Corollary 5.5.

Hence we can assume that s=S [^(n+l)]. And then P can be completed 
by Lemma 5.7, and Lemma 5.8 has been proved.

Lemma 5.8 implies that P can be completed if any of its conjugates 
satisfy the condition. So if P is good and all rows are used, all columns 
are used, or all symbols are used, then P can be completed.
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Corollary 5.9. If P is a good partial latin square of side n^5 with n+1 
non-empty cells, then P can be completed.

Proof. For n^5, [1/2(n+3)J ^n— 1.

We need just one more lemma, before we can prove our main result.

Lemma 5.10. Let P be a partial latin square of side n with q non-empty 
cells, and with the property that neither P nor any of its conjugates have 
any diagonal non-empty cells. Let r and s be the number of non-empty 
rows and columns respectively, and let t be the number of distinct sym
bols occurring in P. Then

min{r+s,s+t,t+r}^-y-.

Proof. Let R and S be the set of cells in rows with at least two non
empty cells and the set of cells in columns with at least two non-empty 
cells respectively, and let T be the set of cells containing symbols occur
ring at least twice in P.

Put x=|(RAT)\S|, y=|RnS)\T|, z=|(TAS)\R| and 
w=|RASAT|.

Then q = x + y + z + w, |R|=x + y + w and so
r^z+ 16|R| VXq + z)
Similarly, s^1/2(q+x) and t^1/2(q+y). So we have
(r+s) + (s+t) + (t+r)=2r+2s+2t=S3q + x+y+z=S4q

as required.

We can now state and prove our main theorem.

Theorem 5.11. For any n^l, a good partial latin square of side n with at 
most n+1 non-empty cells can be completed to a latin square of side n.

Proof. We proceed by induction on n, along the lines explained at the 
beginning of Section 4. We can assume that exactly n+1 cells are non
empty (n=l is trivial!). By Corollary 5.9, the theorem is true for n=S5.

Let P be a good partial latin square of side n^6 with n+1 non-empty 
cells and assume that the theorem holds for partial latin squares of smal
ler side. Let P be on symbols l,...,n. We must show that P can be 
completed to a latin square of side n.
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Case 1. P, or a conjugate of P, contains a diagonal non-empty cell. We assume 
that P is chosen among its conjugates so as to have as many diagonal 
preassignments as possible. Let R be an r X s subarray, containing all non
diagonal non-empty cells of P, chosen as small as possible (and placed in 
the top left hand corner). We can assume that r^s, and that all non
empty cells of P occur in R or on the diagonal outside R. By Lemma 5.8, 
we can assume that the last row and column are empty, and that the 
symbol n does not occur in P. We also assume that s > [^(n+ljj, by 
Lemma 5.7.

For all i, l^i^n, let f(i) be the number of times the symbol i occurs on 
the diagonal outside R. Let / be a symbol with f(/)^l. Let P’ be obtained 
from P by deleting the last row and column, and a diagonal preassign
ment of the symbol /. Then P’ is a partial latin square of side n-1 on 
symbols l,2,...,n-l with n non-empty cells. As n^6, [1/2(11+1)J 5=3, and 
if P’ is bad then Corollary 5.5 applies to P or one of its conjugates. So we 
assume that P’ is good, and, by the induction hypothesis, we can com
plete P’ to a latin square L’ of side n—1. By Lemma 3.1 we have, in L’:

R(i)^r + s —n+1+ f(i) for all 1+/, l^i^n—1.

For the symbol / we have R(/)^r+s—n+1+f(/) —1 =r+s—n+f(Z).
We now disregard what is outside R, except the diagonal preassign

ments of P. We want to apply Theorem 3.2 to embed a modified version 
Rm of R in a latin square L which is a completion of P. To do that we 
must have

Rm(i)^r+s—n+f(i) for all i, l=Sd=Sn.

This holds for the symbol / with Rm(/) = R(/). It will hold for any symbol 
i+/, with l^i^n—1, if Rm(i)^R(i) —1. We must make the symbol n not 
occurring in R occur r+s —n times in Rm.

Suppose that we can find a partial transversal of length r+s —n in R, 
avoiding all preassigned cells and the symbol /. Then we can place the 
symbol n in all cells of the partial transversal to obtain Rm. It will then 
satisfy the inequality for all i, and we can complete by Theorem 3.2.

To find the required partial transversal we apply Lemma 4.2 with the 
non-empty cells of P in R as forbidden cells and / as the forbidden 
symbol. There are at most n non-empty cells of P in R; by adding cells 
arbitrarily we can assume that we have exactly n forbidden cells (there 
are enough cells to add). Lemma 4.2 then gives the partial transversal 
we need, if (n + 1— r) (n —s)^n. By Lemma 4.1, r + s^[4p-J and so, if 
n—r^3 then s^1/2(r + s)^^L, implying
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(n+l-r) (n-s)^4-^^n,

and if r=n—2 then |4£-J — (n—2)= +2, giving

(n+l-r) (n-s>3(L^J-2)^n

for n^ll. Close inspection shows that the condition is satisfied except in 
the following three cases: (i) n=10, r=8, s=7. (ii) n=8, r=s = 6. (iii) n=7, 
r=s = 5. In all cases, r + s>3l-n£1\ so P can contain only one diagonal 
preassignment. It follows that in case (iii) P contains a row with at least 2 
non-empty cells such that all other non-empty cells are in at most 
[1/2(n+l)j=4 columns, and so P can be completed by Corollary 5.5. 
Consider cases (i) and (ii). Here r+s=4r, and it follows from the proof 
of Lemma 4.1 that each non-empty cell of P is either alone in its row or 
alone in its column. But as all conjugates of P have at most one diagonal 
preassignment, at most one of the non-empty cells alone in their rows 
can have an entry which occurs just once in P, and similarly for the cells 
alone in their columns. So at most 2 + 1/2(n + l— 2) distinct symbols occur 
in P. This is 1/2(11+3), so P can be completed by Corollary 5.6.

Case 2. Neither P nor any of its conjugates contains a diagonal non-empty cell. 
We suppose that P is chosen among its conjugates so as to have r3=s and 
r+s^dïiÿiL-(Lemma 5.10), where all non-empty cells are inside the rXs 
subarray R having no empty rows or columns. By Corollary 5.6, we can 
assume s^ [1/2(n+3)j+1. By the same corollary, we can assume that 
there is a symbol which is preassigned exactly once in P; by symmetry 
let it be the symbol 1 in cell (1,1). Let P’ be obtained from P by deleting 
the last row and column and removing the symbol 1 from cell (1,1). 
Then P’ is partial latin square of side n—1 on symbols 2,...,n with n non
empty cells. As in Case 1, we see that we can assume that P’ is good. By 
the induction hypothesis, we can complete P’ to a latin square L’ of side 
n-1, and we have, in L’,

R(i)5=r+s —n + 1 for all i, 2^i^n,

and we need to modify R to Rm with

Rm(i)^r+s —n for all i, l^i^n.

Having obtained Rm, we can complete by Theorem 3.2. So what we 
have to do is make the symbol 1 occur r+s —n times, and we can delete 
any other symbol once.

Let k be the symbol placed in cell (1,1) of L’. We replace this occur- 
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rence of k by the symbol 1. Then we cannot delete any further occur
rences of k, and we need r+s—n—1 additional occurrences of 1.

We look for a partial transversal of length r+s —n—1 in the 
(r— l)X(s— 1) latin rectangle R’ obtained from R by deleting the first row 
and column. We let the preassigned cells of R’ be forbidden cells, and in 
each column of R’ with no preassigned cell we choose an arbitrary cell as 
a forbidden cell (then the cell of that column which is in R but not in R’ 
must be preassigned in P). Of the n+1 non-empty cells of P, at least 2 do 
not correspond to forbidden cells in R’, namely cell (1,1) and some other 
cell in the first column of R, because if (1,1) were the sole prescribed cell 
in its column, a conjugate of P would have a diagonal cell (as the symbol 
1 was not prescribed anywhere else). So at most n —1 cells are forbidden 
in R’. We may add cells so as to have exactly n —1. By Lemma 4.2, we 
can find the required partial transversal of length r+s—n—1 = 
(r— l) + (s— 1) — (n— 1) in R’, avoiding all forbidden cells and the symbol 
k, if

((n—1) + 1 — (r —1)) ((n—1) —(s—l))>n—1

which is

(n+1—r) (n-s)^n-l.

If n—1'5=3 then s^k^r + s)^ 2(n3+1^ and so (n+1 —r) (n — s) 5= 4(n~~) n —1 
as n^6.
If n—r^2 then s-S j — (n—2)= |—-y—|_l6(n+3)J unless n = 8 or 
n = 6. In the latter case we must have r = 5 but then we get 
s^4= [p2(n+3)J. In the former case we get r=s=6, and each of the 7 
symbols occurs at least 5 times in R (before k is replaced by 1); it follows 
that exactly one symbol occurs 6 times, say the symbol b. Then b occurs 
at least 4 times in the 5X5 subsquare (with at most 6 prescribed cells) that 
we consider for our transversal, and at most 2 of the occurrences can be 
in prescribed cells (this follows from the proof of Lemma 5.10). Thus we 
can let b occur twice in our ‘transversal’ (if b = k, b occurs 5 times in the 
5x5 subsquare, and we can let the transversal include k). Then it is easy 
to see that we can find the required ‘transversal’.

So in all cases, we can add r + s —n—1 occurrences of the symbol 1 and 
then embed Rm to obtain a completion of P.

This finishes the proof of Theorem 5.11.
We finally mention some recent results and conjectures on completing 

partial latin squares with no symmetry required, all of which are con
tained in work at least partly due to R. Häggkvist.
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Theorem 5.12. (Chetwynd & Häggkvist 1984). There is a constant 
c>10~5 such that every partial latin square of even side n>107 in which 
every row, column and symbol is used at most cn times can be com
pleted to a latin square of side n.

For large n, this improves a previous result stating that completion is 
possible if n=0 modulo 16 and each row, column and symbol is used at 
most 2-7 V i? times (Daykin & Häggkvist 1984). Theorem 5.12 is prob
ably far from best possible:

Conjecture A. (Daykin & Häggkvist 1984). A partial latin square of side n 
in which every row, column and symbol is used at most times can be 
completed to a latin square of side n.

A related problem is expressed in the following conjecture.

Conjecture B. (Häggkvist 1984a). Let P be a partial latin square of side n in 
which all non-empty cells lie in an rXs subarray, and assume that each 
row is used at most n-r times and that each column is used at most n-s 
times. Then P can be completed to a latin square of side n.

Häggkvist also proved

Theorem 5.13. (Häggkvist 1984b). If P is a partial latin square of side n in 
which the non-empty cells are precisely all cells in the first q rows and all 
cells in the first q columns, and in which the cells common to the first q 
rows and the first q columns form a latin square of side q, then P can be 
completed to a latin square of side n.

Theorem 5.12 gives a partial solution to a problem of L. Fuchs, which 
can be formulated:

Let n=n1+n2+...+nk be a partition of n. When does there exist a latin 
square of side n with latin subsquares of sides n1,n2,...,nk on mutually 
disjoint sets of rows, mutually disjoint sets of columns and mutually 
disjoint sets of symbols? By Theorem 5.12, such a latin square exists if 
iii^cn for all i, l^i^k, and n is large enough. We refer to the literature 
for further results on Fuchs’ problem (Dénes & Pâsztor 1963; Dénes & 
Keedwell 1974; Heinrich 1984).
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6. Completion of partial symmetric Latin Squares

The purpose of this section is mainly to state two results on completion 
of partial symmetric latin squares which are analogous to the Evans 
Conjecture. Both results are very recent.

The diagonal of a partial symmetric latin square of side n is called 
admissible if the number of symbols occurring with parity different from 
n does not exceed the number of empty cells. If n is odd, the diagonal is 
admissible if and only if all its entries are distinct. If the diagonal is not 
admissible, then the square cannot be completed to a symmetric latin 
square of side n. The parity condition of Theorem 3.8 and Corollary 3.9 
simply ensures that the diagonal is admissible.

Figure 17 shows some partial symmetric latin squares with admissible 
diagonal, which cannot be completed to symmetric latin squares of the 
same side.

Theorem 6.1. (Andersen & Hilton 1985). Let n 3, and let P be a partial 
symmetric latin square of side n with admissible diagonal.

If P has less than n non-empty cells, then P can be completed to a 
symmetric latin square of side n.

If P has exactly n non-empty cells then P can be completed if and only 
if P is not of the form of any of the squares El, Ol, or 02.

If P has exactly n + 1 non-empty cells then P can be completed if and 
only if P is neither of the form of any of the squares El, Ol or 02 with a 
further cell filled nor of the form of any of E2, E3, 03, 5A or 5B.

The proof of Theorem 6.1 is very long. The general idea is very similar 
to that of the proof of the main theorem of the last section and so 
is by induction on n, but there are more complications. In particular, the 
case where all or all but one of the rows are used is very elaborate. When 
that is done, it is possible to delete a symmetric pair of entries from the 
square of side n to be completed so as to obtain a partial symmetric latin 
square of side n — 2 (with the same parity as n). We complete by the 
induction hypothesis and focus on the latin rectangle R of Figure 6. By 
Lemma 4.1, we know something about the side of R. We add occur
rences of two new symbols by applying Lemma 4.3, and we embed by 
Theorem 3.8 to obtain the required completion.

Theorem 6.1 can be used to give results on completions of edge
colourings of Kn with the colours of some edges prescribed. Below we 
state two such results, one for even n and one for odd n. The odd case is
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E1 E2 E3 (a=3 or a=4)

n non-empty cells n+1 non-empty cells n+1 non-empty cell<=

n odd

even length

E

1 does

not occur

kz.

T
01

n non-empty cells

3 2

2 4

E

IL
03

n+1 non-empty cells

1
1
2

3
4

5A

n+1=6 non-empty cells 17

an easy consequence of the even case, and the even case follows from 
Theorem 6.1 for odd n alone. The two results are not the strongest 
possible corollaries of Theorem 6.1 in this direction.

Corollary 6.2. Let C be a set of edges of K2m, m 3, and assume that the 
subgraph spanned by the edges of C has an edge-colouring. Then:

a) If |C| m—1, then the edge-colouring can be extended to an edge
colouring of K2m with 2m—1 colours.

b) If |C| = m then the edge-colouring can be extended to an edge
colouring of K2m with 2m—1 colours if and only if the edge-coloured 
subgraph is not of Type 1 of Figure 18.

c) If |C| = m+1 then the edge-colouring can be extended to an edge-
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colouring of K2m with 2m—1 colours if and only if the edge-coloured 
subgraph is neither of Type 1 with an edge added nor of Type 2, 3, 6i or 
6ii of Figure 18.

Corollary 6.3. Let C be a set of edges of K2ni-i, m 5= 3, and assume that 
the subgraph spanned by the edges of C has an edge-colouring. Then:

a) If |C| =$ m then the edge-colouring can be extended to an edge
colouring of K2m_! with 2m —1 colours.

b) If |C| — m+1 then the edge-colouring can be extended to an edge
colouring of K2m_t with 2m—1 colours if and only if the edge-coloured 
subgraph is not of Type 4 or 5 of Figure 19.

The next result that we state is more related to Corollaries 6.2 and 6.3 
than to Theorem 6.1, as it is concerned with edge-colourings of com
plete graphs, where each colour is prescribed at most once. The theorem 
was obtained by E. Mendelsohn and the author, and a formulation com
patible with the statements above is the following.
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Theorem 6.4. (Andersen & Mendelsohn 1985). Let D be a set of edges of 
Kn with at most q(Kn) —1 edges. Then Kn has an edge-colouring with 
q(Kn) colours so that all edges of D have distinct colours, except if n is 
even and D is the edge-set of the graph H2m of Figure 20, or if n=6 and D 
is the edge-set of H5 or H), , or if n = 5 and D is the edge-set of H5.

Theorem 6.4 for odd n follows from the result for even n. We also state a 
reformulation of the even case which stresses that it is a result about 1- 
factorizations of the complete graph. A 1-factorization of a graph G = 
(V,E) is a decomposition of E into mutually disjoint 1-factors. Especially 
1-factorizations of the complete graph K2m of even order have been 
studied extensively (Mendelsohn & Rosa 1984).

Corollary 6.5. Let D be a set of edges of K2m, and let |D| 2m—2. Then
K2m has a 1-factorization with all edges of D in distinct 1-factors if and 
only if D is not the edge-set of the graph H2m, or, if m = 3, of H5 or 
h;.

If most edges of D are concentrated in a ‘small’ subgraph Kr of K2m, 
corresponding to R of Figure 6 not being too large, then Corollary 6.5 is 
proved in the same way as Theorem 6.1.

If not, the proof is completely different (although both cases are treat
ed within the same induction proof); if R is large, the proof relies on a 
lemma saying that then the vertices of K2m can be split into two sets of m 
vertices each, so that exactly m or m + 1 edges of D join a vertex from 
one class to a vertex of the other. Then Theorem 5.11 is used on the 
Km,m formed in this way.
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2m - 3 vertices

i \

Figure 20

Conjecture C. Let m 5= 5, and let D be a set of edges of K2m with |D| 
2m —1. Then K2m has a 1-factorization with all edges of D in distinct 1- 
factors, if and only if

(i) D does not contain the edge-set of H2m, and
(ii) K2m does not have two distinct vertices U and V for which UV 

D but each edge of D is incident with either U or V, |D| = 2m —1.

For m 4, there are several exceptions to Conjecture C.
The work on Theorem 6.4 was to a large extent initiated by a paper by 

A. Hartman on partial triple systems and edge-colourings (Hartman 
1984). It has some consequences for completions of partial symmetric 
latin squares, supplementing Theorem 6.1.

If we define an appearance of a symbol in a partial symmetric latin 
square as either an occurrence in a diagonal cell or two occurrences in a 
symmetric pair of cells, then n non-empty cells may correspond to as 
little as -j appearances. In the case where no symbol appears more than 
once, we can strengthen Theorem 6.1 by applying Corollary 6.5.

Corollary 6.6. Let P be a partial symmetric latin square of odd side 2m —1 
in which one symbol does not appear and each of the remaining 2m —2 
symbols has at most one appearance. Then P can be completed to a 
symmetric latin square of side 2m—1 if and only if P is not of the form of 
any of the squares of Figure 21.

Corollary 6.1. Let P be a partial symmetric latin square of even side 2m in 
which one symbol does not appear and each of the remaining 2m —1 
symbols has at most one appearance, one of them not appearing outside
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Figure 22

the diagonal. Then P can be completed to a symmetric latin square of 
side 2m if and only if P is not of the form of the square in Figure 22, and 
at most m symbols occur on the diagonal.

7. Final remarks

Many topics and results that would fit in well with the title of this paper 
have not been included. And we do not even claim to have covered the 
most important subjects. The choice of material has been as much affected 
by the author’s personal preferences as by any assignment of different 
levels of importance to the topics. It has also been a wish to make the 
contents coherent rather than desultory.
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For example, we have not mentioned the word qtiasigroup at all, and 
yet it a concept almost identical to that of a latin square.

A quasigroup (Q,*)  is a set Q with an operation ,*,  such that for all a 
and b in Q, each of the equations a*x  — b and x*a  — b is uniquely 
solvable in x. A latin square is the same as a multiplication table for a 
quasigroup. We have imposed very little extra structure on our latin 
squares in this paper, basically only symmetry (x*y  = y*x)  and idempo
tency (x*x  — x). If the quasigroup is required to satisfy other simple 
identities, further interesting completion problems arise (one of the more 
famous problems among these is that of completing partial Steiner triple 
systems). We refer the reader to the literature (Lindner 1984).

The book which is the standard reference on latin squares is that by 
J. Dénes and A. D. Keedwell. It emphasizes the quasigroup point of view 
and contains many references (Dénes & Keedwell 1974). At the time of 
writing, Dénes and Keedwell are editing a new, comprehensive volume 
on latin squares (two of the references that we have given are to manu
scripts written for this volume) (Dénes and Keedwell 1986?).

The present paper is meant to have two purposes: Partly to survey the 
area of completing partial latin squares, and partly to announce some 
new results in that area, carrying out the details of proof for one of these. 
We hope that the reader has realized that such completion problems, 
even though they are often very easy to formulate, can be quite intricate. 
So it appears to be a fitting end to this paper to ask: Just how intricate is 
the problem of completing partial latin squares?

We can define the intricacy of completing partial latin squares as the 
least integer k satisfying the following:

For any integer n, any partial latin square of side n can be partitioned 
into k partial latin squares of side n each of which can be completed to a 
latin square of side n.

Partitioning a partial latin square P into Pb ..., Pk means filling some 
cells of the Pt’s such that if cell (i,j) of P is non-empty, then its entry 
occurs in cell (i,j) of one of the Pt’s, and all non-empty cells of the Pt’s are 
obtained in this way.

D. E. Daykin and R. Häggkvist posed the problem of showing that 
the intricacy of completing partial latin squares is 2. The concept of 
intricacy was later generalized to a large class of combinatorial construc
tion problems (Daykin and Häggkvist 1981; Daykin and Häggkvist 
1984; W. E. Opencomb 1984).

It follows from Corollary 3.3 (Corollary 3.4 is enough if n is even) 
that there exists a finite k satisfying the condition of the definition of 
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intricacy, because k=4 will do. So the question is whether the intricacy is 
2, 3 or 4.

Conjecture D. The intricacy of completing partial latin squares is 2.

Acknowledgements. Thanks are due to A. J- fk- Hilton and E. Mendelsohn for their permis
sion to include unpublished results of joint work in this paper.
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